Pinpoint CoordinationPerspective2019

When comparing two designs, depending on the number of variables we evaluate, ideal coordination can appear to be different.
Coordination in design can be conceptually described using overlapping circles. Within an arbitrary field of view, a certain number of interactive perspectives can be evaluated . For example, we might consider the objectives of five separate perspectives (eg. circulation, envelope, structure, code, and budget) and outline where they have mutually beneficial goals (eg. double loaded circulation at the core permits shorter distances for fire exit code). Certain objectives could be appropriate to only one or possibly many perspectives and the goal would be to identify design decisions with the most mutually beneficial perspectives included.

In the first example below with five perspectives we can identify 3 zones of highest coordination, sharing a maximum of 3 perspectives, and with a relatively large area of overlap. If we kept these same perspectives and added another three (eg. waste, aesthetics, and construction time) we would only identify 2 zones of highest coordination, sharing a maximum of 6 perspectives, and with smaller areas of overlap.

In reality, all of the numerous variables are present whether we choose to evaluate the layers and create a highly coordinated result, or ignore them. For instance, whether we choose to measure the carbon score of a project or not, a measurement exists. When comparing two designs, depending on the number of variables we evaluate, ideal coordination can appear to be different. In the third diagram the lightly-shaded pink regions identify choices that would have had a higher mutually beneficial result than the best of option one, yet were not identified in the evaluation due to the limited number of perspectives. Also, while it may be more strenuous to identify the tiny area with the greatest number of overlapping perspectives, this choice includes benefits for the largest number of perspectives so it also represents the highest potential for repetition.
Danielson Architecture Office

Industrial   Residential   Public   Algorithm   Material   Philosophy   About


Privacy Policy
© 2025 D A O
All rights reserved