Homology AlgorithmPerspective2018

This will result in a constant, slight modification of the design occurring endlessly in the pursuit of the latest measure of efficiency.
Identical genetic coding can be flexibly applied as illustrated by the redistribution in relative size and position of different species’ bones such as the humerus, radius, ulna, metacarpals, and phalanges. This is due to the implicitization of nesting equations in parametric design sequentially. The homology of the fundamental division of the bone structure into five groups remains fixed between these species while their subsequent differences are expressed through growth controlled by their unique toolkits to express specific variations. This method of design where control over multiple “species” is achieved while reusing the same genetic code is how innovation in architecture should presently take place. An important caveat in this description is that all bodily systems must be designed for simultaneously by the governing algorithm as major changes will need to be considered to finalize the fixed rules while merging all necessary systems together into a single compatible set of genetic code.

With this design code, the generation of organisms capable of expressing differences equivalent to species with completely different modes of travel will be possible with relative ease. Another important caveat in undertaking the process of orchestrating this genetic system is that a specifically intended final application for the genetic code is necessary in order to rigorously restrict the code according to fixed rules that coordinate well with the process of fabrication or growth. This approach will also test the combination of all parameters as a whole for their capacity to survive. Individual systems tested separately are not really a good measure for an organisms capability to survive as a whole solution can be significantly compromised by one system. Therefore the objective is to define the collective set of key architectural genes in order to form the basis for a plethora of built work around the world.

Similar to the race for artificial intelligence, architecture will soon be based on the most competent parametric designs with vastly integrated advantageous qualities built into the design framework that can negotiate the widest range of outcomes with the most competent fixed rules. In this illustrated example, we have the same fixed rules for bone organization controlling the vast differences between modes of transportation including terrestrial, airborne, and aquatic abilities. These differences are calibrated to many other factors such as changes in bone density, weight of the body, speed of growth, scale of the body, etc. Selective pressures for the building industry that will influence the prioritization of algorithms will be many including cost, spatial efficiency, ease of construction, time to construct, durability, reparability, replicability, transportability, aesthetic appeal, simplicity, updatability for future systems, and sustainability. The weighted value of each of these variables will change over time, with ease as they are all algorithmically integrated. This will result in a constant, slight modification of the design occurring endlessly in the pursuit of the latest measure of efficiency and will unravel categorizations by release date such as version 1, 2, 3 in favour of speciation as just a pure continuum.
Danielson Architecture Office

Industrial   Residential   Public   Algorithm   Material   Philosophy   About


Privacy Policy
© 2025 D A O
All rights reserved